If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-7w-35=0
a = 1; b = -7; c = -35;
Δ = b2-4ac
Δ = -72-4·1·(-35)
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3\sqrt{21}}{2*1}=\frac{7-3\sqrt{21}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3\sqrt{21}}{2*1}=\frac{7+3\sqrt{21}}{2} $
| 9m2+18m+-2=5 | | (2x+125)=(x+163) | | -7x-4=6x-108 | | 2(x-3.50)=5.80 | | 5x^2-3x;x=2 | | 3x-8=-7+2x | | 7r^2+63r=-56 | | 3w+4w-1=12+3/5(w+1) | | 9y-7y-13=10.17 | | (-2p-8)/4=6 | | 4x-16=12-5x | | |3x-4|=20 | | v/4+5=17 | | -11r+11(6r+4)=55+10r | | -6x-2x=40 | | 3(w+2)-7w=34 | | 4(x-5)-5=6x=33 | | n^2=14+5n | | 6(x+1)+5=13-2(1-3x) | | 2(2b-1)=15 | | C(x)=0.85x+8 | | w=3/8=1/4 | | 4t+2+5t-8t=3+6 | | 18x+25=24x+13 | | 60+132d-36=-d+7 | | X=525-(63-5x) | | 4t+2+5t-8t=0 | | (5x+9)=(3x+5) | | 0=-16x^2+36x-20 | | 4x^2-16x^2+16=0 | | (5x+10)=(8x-14) | | 5(n+6)+20=20 |